Non-linear Differential Equations and Rotating Disc Electrodes: Padé approximationTechnique
نویسندگان
چکیده
منابع مشابه
Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملApproximately $n$-order linear differential equations
We prove the generalized Hyers--Ulam stability of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.
متن کاملexact and numerical solutions of linear and non-linear systems of fractional partial differential equations
the present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. the proposed scheme is based on laplace transform and new homotopy perturbation methods. the fractional derivatives are considered in caputo sense. to illustrate the ability and reliability of the method some examples are provided. the results ob...
متن کاملSolving Non-linear Fredholm Integro-differential Equations
In this paper, Semi-orthogonal (SO) B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of linear and non-linear second order Fredholm integro-differential equations. The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this functions are presented to reduce the solution of linear and...
متن کاملGeometric Solutions to Non-linear Differential Equations
A general formalism to solve nonlinear differential equations is given. Solutions are found and reduced to those of second order nonlinear differential equations in one variable. The approach is uniformized in the geometry and solves generic nonlin-ear systems. Further properties characterized by the topology and geometry of the associated manifolds may define global properties of the solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2017
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2017.05.061